Cyanobacterial Bloom Index (CyaBI)

*This pre-core indicator and its threshold values are yet to be commonly agreed in HELCOM.*

*The indictor is included as a test indicator for the purposes of the ‘State of the Baltic Sea’ report 2018, and the results are to be considered as intermediate.*

**Key Message**

This pre-core indicator evaluates cyanobacterial surface accumulations and cyanobacteria biomass during summer (20th June – 31st August) and covers the assessment period 2011-2015. Currently data is not available for 2016 and thus the indicator evaluation period is only from 2011 to 2015.

**Key message figure 1.** Status assessment results for the evaluation of the indicator ‘Cyanobacterial Bloom Index’. The assessment is carried out using Scale 4 HELCOM assessment units (defined in the HELCOM Monitoring and Assessment Strategy Annex 4). See Results section below for details. Click here to access interactive maps at the HELCOM Map and Data Service: Cyanobacterial bloom Index.
Of the 10 assessed open-sea sub-basins, good status was not achieved in any sub-basin based on the cyanobacterial bloom index (CyaBl biomass achieving the defined threshold value, which reflects good conditions). The sub-basins causing greatest concern in the assessment period 2011-2015 were the Northern Baltic Proper and the Gulf of Riga. The sub-basins closest to achieving the threshold value were the Arkona Basin, Bornholm Basin, Eastern Gotland Basin and Western Gotland Basin.

The indicator is operational in the following open sea assessment units: The Bothnian Sea, Gulf of Finland, Northern Baltic Proper, Gulf of Riga, Western Gotland Basin, Eastern Gotland Basin, Bornholm Basin, Gdansk Basin, Arkona Basin and the Bay of Mecklenburg. The indicator in its current form is not relevant in the Kattegat, Great Belt, the Sound, Kiel Bay, The Quark or in the Bothnian Bay. The indicator is not applicable in the Åland Sea.

Relevance of the core indicator

The indicator describes the symptoms of eutrophication in the open sea areas, caused by nutrient enrichment. Phosphorus load in a dominantly nitrogen-limited environment is considered the main anthropogenic pressure affecting the indicator since many cyanobacteria are capable of fixing their own nitrogen from the atmosphere. Human populations, as well as anthropogenic activities such as agriculture and industry, contribute the majority of nutrient inputs to the Baltic Sea. Eutrophication is driven by a surplus of the nutrients nitrogen and phosphorus in the sea. Nutrient over-enrichment causes elevated levels of algal and plant growth, resulting in increased turbidity, oxygen depletion, changes in species composition and nuisance blooms of algae (HELCOM, 2013). The indicator also reflects potential changes in the phytoplankton community as cyanobacteria commonly dominate the community during a bloom. These are related to the changes in nutrient composition and climate, and have direct impact on sea-use and ecosystem service. Extensive cyanobacterial blooms have a potentially negative impact on the biodiversity of marine ecosystems as well as on its socio-economic value.

Policy relevance of the core indicator

<table>
<thead>
<tr>
<th>BSAP Segment and Objectives</th>
<th>MSFD Descriptors and Criteria</th>
</tr>
</thead>
</table>
| **Primary link** | Baltic Sea unaffected by eutrophication | D5 Human-induced eutrophication  
- D5C3 The number, spatial extent and duration of harmful algal bloom events are not at levels that indicate adverse effects of nutrient enrichment |
| **Secondary link** | Favourable status of Baltic Sea biodiversity | D1 Biodiversity  
- D1C6 The condition of the habitat type, including its biotic and abiotic structure and its functions (e.g. its typical species composition and their relative abundance, absence of particularly sensitive or fragile species or species providing a key function, size structure of species), is not adversely affected due to anthropogenic pressures. |

Other relevant legislation:
Cite this indicator

HELCOM (2018). Cyanobacteria bloom index. HELCOM pre-core indicator report. Online. [Date Viewed], [Web link].

ISSN 2343-2543

Download full indicator report

Cyanobacterial bloom index HELCOM pre-core indicator 2018 (pdf)
Results and Confidence

This pre-core indicator and its threshold values are yet to be commonly agreed in HELCOM. The indicator is included as a test indicator for the purposes of the ‘State of the Baltic Sea’ report 2018, and the results are to be considered as intermediate.

Good status was not reached in any of the assessment units where the indicator was applied. The sub-basins causing greatest concern regarding status during the assessment period 2011-2015 were the Bothnian Sea, Northern Baltic Proper and Gulf of Riga, where the eutrophication ration (ER) was ≥1.50 (Results table 1). ER values were also above the threshold value in the other assessed areas, and the assessment units closest to achieving good status were the Arkona Sea, Bornholm Basin, Eastern Gotland Basin and Western Gotland Basin (Results figure 1 and Results Table 1).

Results figure 1. Status of cyanobacterial surface accumulations, presented as eutrophication ratio (ER). ER shows the present concentration in relation to the threshold value, increasing along with increasing eutrophication. The threshold value has been achieved when ER ≤ 1.00.
Results table 1. Information on threshold values, present concentration and status (good status / not good status) of the Cyanobacterial Bloom Index indicator. The indicator values are based on two parameters, Cyanobacterial Surface Accumulations and Cyanobacteria biomass (See Thresholds and Status evaluation table 1 and Assessment protocol).

<table>
<thead>
<tr>
<th>HELCOM ID</th>
<th>Name of assessment unit</th>
<th>Proposed threshold value (normalized between 0-1, with 1 expressing good status)</th>
<th>Estimate 2011-2015 (normalized between 0-1, with 1 expressing good status)</th>
<th>Eutrophication ratio (ER)</th>
<th>Status (fail / achieve threshold value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEA-001</td>
<td>Kattegat</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-002</td>
<td>Great Belt</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-003</td>
<td>The Sound</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-004</td>
<td>Kiel Bay</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-005</td>
<td>Bay of Mecklenburg</td>
<td>0.92</td>
<td>0.72</td>
<td>1.29</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-006</td>
<td>Arkona Sea</td>
<td>0.90</td>
<td>0.85</td>
<td>1.06</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-007</td>
<td>Bornholm Sea</td>
<td>0.87</td>
<td>0.80</td>
<td>1.09</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-008</td>
<td>Gdansk Basin</td>
<td>0.98</td>
<td>0.83</td>
<td>1.19</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-009</td>
<td>Eastern Gotland Basin</td>
<td>0.84</td>
<td>0.76</td>
<td>1.10</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-010</td>
<td>Western Gotland Basin</td>
<td>0.87</td>
<td>0.78</td>
<td>1.11</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-011</td>
<td>Gulf of Riga</td>
<td>0.90</td>
<td>0.53</td>
<td>1.71</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-012</td>
<td>Northern Baltic Proper</td>
<td>0.77</td>
<td>0.45</td>
<td>1.71</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-013</td>
<td>Gulf of Finland</td>
<td>0.90</td>
<td>0.69</td>
<td>1.30</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-014</td>
<td>Åland Sea</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>SEA-015</td>
<td>Bothnian Sea</td>
<td>0.58</td>
<td>0.37</td>
<td>1.55</td>
<td>fail</td>
</tr>
<tr>
<td>SEA-016</td>
<td>The Quark</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-017</td>
<td>Bothnian Bay</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>

Long-term trends

Blooms of nitrogen-fixing cyanobacteria are a natural phenomenon in the Baltic Sea (Bianchi et al. 2000, Poutanen & Nikkilä 2001, Westman et al. 2003), and have been observed in phytoplankton sampling in the early 1900s (Hällfors et al. 2012). The blooms became extensive during the 20th century, and have occurred commonly in the Baltic Proper and the Gulf of Finland since the 1960s (Finni et al. 2001, Poutanen & Nikkilä 2001).

The longest satellite based time series on algae accumulations from the Baltic Sea is presented by Kahru and Elmgren (2014). According to this satellite-based investigation, cyanobacterial blooms have increased in the Baltic Sea since the late 1970s (Result figure 2). Also, the total area covered by the blooms has increased during this time. However, the development has not been linear as the period with the lowest amount of blooms occurred in the late 1980s – early 1990s.
Result figure 2. Mean fraction of cyanobacteria accumulations (FCA%) and total accumulated area affected (TA) in the entire Baltic Sea between 1979 and 2013 based on satellite detection (from Kahru and Elmgren, 2014).

The general trend in indicator status for the sub-basins indicates a worsening trend (i.e. decreasing Cyanobacterial Bloom Index values) for the Northern Baltic Proper (Results figure 3A) and Bothnian Sea (Results figure 3B). For the Gulf of Finland and Eastern Gotland Basin, recent years (circa 2005 onwards) show slightly better status than during the earlier time period of 1998-2004. However, observations before 1996 also generally show on better status than the years following this time point.

Figure 3A)
Temporal development of ‘Cyanobacterial bloom index’ in the open-sea assessment units: A) In the Eastern Gotland Basin, the Northern Baltic Proper and the Gulf of Finland in 1990-2014, and B) in the Arkona Basin, the Bornholm Basin, the Gulf of Riga and the Bothnian Sea in 2003-2015. Dashed lines show the five-year moving averages. Green lines in B denote the indicator threshold. Thresholds are not included in A due to differences in sub-basin division (sub-basin division given in Kahru & Elmgren 2014). Significance of trends was assessed with Mann-Kendall non-parametric tests for the whole data sets. Significant (p<0.05) deteriorating trends are indicated with orange data points, and no significant improving trends were found in the current data set.

Confidence of the indicator status evaluation

The confidence of the status estimate was not assessed in absence of methodology to define status confidence (ES_SCORE). Further development of this indicator is required and is underway.
Thresholds and Status evaluation

This pre-core indicator and its threshold values are yet to be commonly agreed in HELCOM. The indicator is included as a test indicator for the purposes of the ‘State of the Baltic Sea’ report 2018, and the results are to be considered as intermediate.

The indicator uses assessment unit specific threshold values that are presented as normalized values. The indicator is based on two parameters: (1) cyanobacterial surface accumulation (CSA) and (2) cyanobacterial biomass. A threshold value is set for each parameter for each assessment unit, and the combined indicator threshold value is an average of the two. Values that are above the threshold value indicate good status (Thresholds and Status evaluation figure 1).

If either parameter is not applicable to a specific assessment unit, then only one parameter is used as the threshold value. If both parameters are applicable, then an averaged normalized value is used as the threshold value. The specific values for each parameter and the proposed overall threshold value are listed in Thresholds and Status evaluation 1.

Thresholds and Status evaluation figure 1. Schematic representation of the averaged and normalized threshold value applied in the cyanobacteria bloom index pre-core indicator, the threshold values are assessment unit specific (see Thresholds and Status evaluation table 1).
## Thresholds and Status evaluation table 1.

Summary table of assessment unit specific threshold values in the open-sea areas.

<table>
<thead>
<tr>
<th>HELCOM ID</th>
<th>Assessment unit (open sea)</th>
<th>Proposed CSA threshold value (normalized between 0-1, with 1 expressing good status)</th>
<th>Proposed cyanobacteria biomass threshold value (normalized threshold value between 0-1, with 1 expressing good status)</th>
<th>Proposed threshold value for CyaBI (normalized threshold between 0-1, with 1 expressing good status)</th>
<th>Comments on indicator protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEA-001</td>
<td>Kattegat</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-002</td>
<td>Great Belt</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-003</td>
<td>The Sound</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-004</td>
<td>Kiel Bay</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-005</td>
<td>Bay of Mecklenburg</td>
<td>Not applicable</td>
<td>0.92</td>
<td>0.92</td>
<td>Indicator based only on biomass</td>
</tr>
<tr>
<td>SEA-006</td>
<td>Arkona Basin</td>
<td>0.86</td>
<td>0.94</td>
<td>0.90</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-007</td>
<td>Bornholm Basin</td>
<td>0.86</td>
<td>0.87</td>
<td>0.87</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-008</td>
<td>Gdansk Basin</td>
<td>0.98</td>
<td>na</td>
<td>0.98</td>
<td>Indicator only based on CSA</td>
</tr>
<tr>
<td>SEA-009</td>
<td>Eastern Gotland Basin</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-100</td>
<td>Western Gotland Basin</td>
<td>0.87</td>
<td>na</td>
<td>0.87</td>
<td>Indicator based only on CSA</td>
</tr>
<tr>
<td>SEA-011</td>
<td>Gulf of Riga</td>
<td>0.92</td>
<td>0.88</td>
<td>0.90</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-012</td>
<td>Northern Baltic Proper</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-013</td>
<td>Gulf of Finland</td>
<td>0.96</td>
<td>0.83</td>
<td>0.90</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-014</td>
<td>Åland Sea</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-015</td>
<td>Bothnian Sea</td>
<td>0.86</td>
<td>0.30</td>
<td>0.58</td>
<td>Indicator average of CSA and biomass</td>
</tr>
<tr>
<td>SEA-016</td>
<td>The Quark</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
<tr>
<td>SEA-017</td>
<td>Bothnian Bay</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>

**Method description for deriving the threshold values**

The threshold values for the assessment units were derived separately for the two long-term datasets used for the two indicator parameters:

1. cyanobacterial surface accumulations (CSA); the independent satellite-based time series on algae accumulations from 1979-2014 in the Baltic Sea by Kahru and Elmgren (2014)
2. biomass; data on in-situ observations of cyanobacteria biomass 1990-2015 collated by the HELCOM PEG group (Wasmund et al. 2015).
The threshold values are derived by combining statistical analysis of long-term data with expert judgement. The main concern in proposing threshold values is the lack of sound and consistent historical data. The data starting from 1970s or 1980s, which are available in the threshold setting datasets do not correspond to “no, or very little human impact” that could be used as a reference condition. As cyanobacterial blooms are a natural phenomenon in the Baltic Sea the threshold values do not need to describe a status with no blooms, but rather a status without extensive and potentially harmful blooms. This status should be consistent with sustainable use of the sea by humans.

Investigations of stable nitrogen and carbon isotope composition as well as of the organic carbon content of sediments have shown that the increase in nutrients and productivity began already in the 1950s–1960s (Andrén et al., 2000; Struck et al., 2000; Poutanen & Nikkilä, 2001). According to Finni et al. (2001), cyanobacterial blooms have become common in the open sea in both the Baltic Proper and the Gulf of Finland since at least the 1960s.

To meet this aim of identifying time periods with low bloom intensity, the thresholds were derived based on the time periods within the available datasets where the status was already impacted by eutrophication but the bloom intensity was low. Within the time periods covered by the available datasets, the status covers varying levels of cyanobacterial blooms. To distinguish the shorter periods of low bloom intensity in comparison to the general level, the shift detection method based on an algorithm (Rodinov 2004) was used; or if no such periods were distinguished, the averages of separate years with lower bloom intensity were calculated using the quartile method. The shift-detection method was successfully applied to all assessment units for the satellite-based cyanobacterial surface accumulations (CSA) (parameter 1) with data available since 1979. The data could be extended from 1992 to 1979 by using results provided by Kahru & Elmgren (2014), transforming corresponding indicator variables using a linear model between the two data sets (Anttila et al. 2018).

The shift-detection method was also applied to detect biomass threshold values in the Bothnian Sea, where cyanobacterial blooms did not occur regularly before the late 1990s. In the remaining assessment units where biomass data was not available from a time period before the vast increase of cyanobacterial blooms, threshold values were estimated using the quartile expressing lowest biomass.
Assessment Protocol

This pre-core indicator and its threshold values are yet to be commonly agreed in HELCOM.
The indicator is included as a test indicator for the purposes of the ‘State of the Baltic Sea’ report 2018, and the results are to be considered as intermediate.

The ‘Cyanobacterial bloom index’ indicator evaluates the increase in cyanobacterial blooms, taking into account different aspects of the bloom phenomenon. As a multiparametric index, it has the advantage of taking into account different types of data, e.g. observed from different platforms: remotely (satellites) or in-situ (measurements in the sea), and measured using varying techniques.

All applied parameters must fulfill the following requirements: they 1) describe a relevant aspect of cyanobacteria accumulations not already considered by the other parameters, 2) have sub-basin specific threshold values and 3) be updatable by status values for the sub-basin division and status period defined for the existing indicator.

This HELCOM pre-core indicator (CyaBI) consists of two parameters: 1) cyanobacterial surface accumulations (CSA), combining information of volume, length of bloom period and severity of surface accumulations estimated from remote sensing observations and 2) the cyanobacteria biomass in the water column analyzed from in-situ observations. The parameters are normalized, to allow combined use of the different parameters in the index.

The CSA (parameter 1) relies on high-frequency data, and is optimal for describing the bloom formation at the surface. However, this parameter is strongly influenced, not only by eutrophication, but also by climate-related variation including wind conditions. The cyanobacteria biomass (parameter 2) supplements CSA by providing information of the actual amount of cyanobacteria in the water column. Due to less frequent monitoring, neither the status evaluation nor the threshold values of cyanobacteria biomass have sufficient confidence to stand alone as a HELCOM core indicator. Combining the two parameters, allows for deriving more reliable status estimates: an indicator expressing the consequence of increased cyanobacteria (the blooms) with high confidence; yet related strongly to changes in the actual amount of cyanobacteria, and subsequently, to eutrophication.

The ‘Cyanobacterial bloom index’ indicator responds negatively to increasing eutrophication, i.e. low values indicate increased eutrophication.

Parameter 1: Cyanobacterial surface accumulations (CSA)

The main data source used to develop the indicator was satellite data derived from the daily algal bloom product of the Finnish Environment Institute (SYKE), which is in turn based on chlorophyll-a and turbidity products. The observations were interpreted to estimate the potentiality of surface algae accumulations in four classes [0-3 i.e. no, potential, likely and evident] (www.syke.fi/surfacealgalblooms). The spatial aggregation of daily Earth Observation (EO) observations from the assessment units was conducted by calculating an algae barometer value. The algae barometer (AB) value is a weighted sum of the proportion of positive algae observations in the different classes in an assessment area (Eq. 1; Rapala et al. 2012).

\[
AB = \frac{1}{n_{tot}} (n_{#c1} + n_{#c2} \times 2 + n_{#c3} \times 3)
\]

Eq. 1
where \( n_{\text{tot}} \) is the total number of algae observations, and \( n_{\text{cl1}}, n_{\text{cl2}}, \) and \( n_{\text{cl3}} \) are the number of algae observations in classes 1-3.

Seasonal bloom characteristics were estimated using an empirical cumulative distribution function (ECDF) drawn from seasonal observations of daily algae barometer values from each assessment area. ECDF gives the cumulative proportion of the seasonal algae barometer values. The bloom characteristics (i.e. the indicative variables of CSA) were defined for each assessment unit as follows: 1) seasonal volume, i.e. the areal coverage above the ECDF functions, 2) length of algal surface accumulation period, i.e. the percentage of observations with algae barometer values above zero, and 3) bloom severity, i.e. the 90-percentile of the algae barometer observations. The CSA index time series was derived by taking an average from the normalized time series of the indicative variables and grouping all the three EO-based parameters together.

Assessment protocol figure 1. An example (Gulf of Finland) of grouping the normalized EO-based parameters (from top to bottom) A) seasonal bloom volume, B) length of bloom period and C) Severity of blooms, and D) a combined cyanobacterial surface accumulation (CSA) parameter. As the indicator responds negatively to increased eutrophication, 1 represents the best conditions and 0 the worst. Black dashed horizontal line indicates the parameter-specific target condition and the red dashed line indicates the estimate for 2011-2014.

Parameter 2: Cyanobacteria biomass

Cyanobacteria biomass was analyzed using microscopy techniques, analyzing water samples. The data used in the indicator parameter originated from Estonian, Finnish, German, Latvian, Lithuanian, Polish and Swedish national monitoring data. The data was collated by the HELCOM phytoplankton expert group (PEG), in order to produce a HELCOM Baltic Sea Environmental Fact Sheet, updated annually (Wasmund et al. 2015). The main sampling locations are presented in Assessment protocol figure 2.
Assessment protocol figure 2. Map of the regularly sampled stations, containing one graph on diazotrophic cyanobacteria biomass per area (seasonal mean biomass µg/L). Names of some Finnish coastal stations are abbreviated. Stations in Bothnian Bay, Kiel Bay and Kattegat have been tested but the results are not presented.

The data included biomass analyses (wet weight in µg/L) of integrated water samples (0-10 m, less at some shallower coastal stations; 0-20 m at the Landsort Deep; surface = 0-1 m in Bay of Mecklenburg). Sampling at the Finnish high-frequency coastal stations “Hailuodon ed int.asema”, “Suomenl Huovari Kyvy-BA”, “UUS-23 Längden” and “Vav-11 V-4” reached from surface to the depth of 2x Secchi depth (usually 0-8m); they could be integrated into the existing data series without problems. Genera included in the index include: *Nodularia*, *Aphanizomenon* and *Dolichospermum* (previously *Anabaena*).

The information is based on national monitoring samples analyzed and identified by phytoplankton experts, using the mandatory HELCOM methods (HELCOM 2014). Additional explanations on the counting procedure in size classes is given by Olenina et al. (2006). Sampling frequency was variable and dependent on national monitoring cruises. At least one sample per month has to be available to allow the calculation of the seasonal average. This precondition could also be fulfilled by pooling nearby stations. Only with a few exceptional cases are data presented despite missing data from one month out of three.
Monthly means were calculated from the single data, which served as a basis for calculation of seasonal mean values.

**Assessment units**

The pre-core indicator is applicable in 10 open sea assessment units (at least one nautical mile seawards from the baseline).

The indicator is applicable in the following open sea assessment units: Bothnian Sea, Gulf of Finland, Northern Baltic Proper, Gulf of Riga, Western Gotland Basin, Eastern Gotland Basin, Bornholm Sea, Gdansk Basin, Arkona Sea and Bay of Mecklenburg. The indicator is currently not relevant in the Kattegat, the Sound areas, the Bothnian Bay and the Quark due to the absence of cyanobacterial bloom formations, and in its present form, not applicable in Åland Sea or coastal areas. It is also not used in the Kiel Bay, as the relevance of the indicator remains un-certified.

The indicator is assessed within the geographical assessment unit level 4 proposed by HELCOM: open sea sub-basin areas and coastal waters WFD coastal types and bodies. The assessment units are defined in the HELPOM Monitoring and Assessment Strategy Annex 4.
Relevance of the Indicator

This pre-core indicator and its threshold values are yet to be commonly agreed in HELCOM. The indicator is included as a test indicator for the purposes of the ‘State of the Baltic Sea’ report 2018, and the results are to be considered as intermediate.

Eutrophication assessment

The status of eutrophication is assessed using several core indicators. Each indicator focuses on one important aspect of the complex issue. In addition to providing an indicator-based evaluation of cyanobacterial blooms, this indicator also contributes descriptively to the overall eutrophication assessment, along with the other eutrophication core indicators. The integrated eutrophication assessments of the open sea areas is based on an integration of several core indicator evaluations, though this indicator is currently not included. Since cyanobacterial blooms are also affected by non-eutrophication related changes (see chapter ‘Role of cyanobacterial blooms in the ecosystem’), the indicator should receive a low weight in any integrated assessment, unless unusually high relationship to eutrophication is shown.

Policy relevance

Eutrophication is one of the four thematic segments of the HELCOM Baltic Sea Action Plan (BSAP) with the strategic goal of having a Baltic Sea unaffected by eutrophication (HELCOM 2007). Eutrophication is defined in the BSAP as a condition in an aquatic ecosystem where high nutrient concentrations stimulate the growth of algae, which leads to imbalanced functioning of the system. The goal for eutrophication is broken down into five ecological objectives, of which one is "natural levels of algal blooms".

The EU Marine Strategy Framework Directive (Anonymous 2008) requires that “human-induced eutrophication is minimized, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algal blooms and oxygen deficiency in bottom waters” (Descriptor 5). The Commission Decision on GES (2017) defines ‘Harmful algal blooms (e.g. cyanobacteria) in the watercolumn’ as the criteria element to be assessed using the criteria D5C3 ‘The number, spatial extent and duration of harmful algal bloom events are not at levels that indicate adverse effects of nutrient enrichment’.

Role of cyanobacterial blooms in the ecosystem

Surface blooms of nitrogen-fixing cyanobacteria, though considered to be a natural phenomenon (Bianchi et al. 2000), have become extensive and frequent in many parts of the Baltic Sea since the 1990s (Finni et al. 2001). The blooms partly consist of the toxic species *Nodularia spumigena*, which has been reported to have negative effects on grazing zooplankton (Enström et al. 2000, Sellner et al. 1994, Sopanen et al. 2009). Cyanobacteria have been shown to have allelopathic effects on other phytoplankton groups and increasing effects on bacteria (Suikkanen et al. 2004, 2005). Since a major part of cyanobacterial biomass generated during bloom events eventually settles to the bottom of the sea, it potentially increases oxygen depletion in stratified areas (Vahtera et al. 2007a). Thus, extensive cyanobacterial blooms potentially have a negative impact on the biodiversity of both the pelagic and benthic communities.
The increase of cyanobacterial blooms is partly caused by anthropogenic nutrient enrichment, especially the proportional increase of dissolved phosphorus. Also other, non-eutrophication related, causes have been suggested to have an effect, such as: hydrographic changes - increased temperature, decreased salinity or more frequent vertical mixing, changes in micronutrients or trace metals, as well as changes in the interaction between phyto-zooplankton species (Kahru et al. 1994).

### Human pressures linked to the indicator

<table>
<thead>
<tr>
<th>General</th>
<th>MSFD Annex III, Table 2a</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Strong link</strong></td>
<td>Substances, litter and energy</td>
</tr>
<tr>
<td></td>
<td>- Input of nutrients – diffuse sources, point sources, atmospheric deposition</td>
</tr>
<tr>
<td><strong>Weak link</strong></td>
<td></td>
</tr>
</tbody>
</table>

www.helcom.fi > Baltic Sea trends > Indicators © HELCOM 16
Monitoring Requirements

This pre-core indicator and its threshold values are yet to be commonly agreed in HELCOM. The indicator is included as a test indicator for the purposes of the ‘State of the Baltic Sea’ report 2018, and the results are to be considered as intermediate.

Monitoring methodology

Monitoring of cyanobacteria in the Contracting Parties of HELCOM is described on a general level in the HELCOM Monitoring Manual in the sub-programme phytoplankton species composition, abundance and biomass.

Specific monitoring guidelines are under development with the aim to be included in the HELCOM Monitoring Manual at a later stage.

Current monitoring

The monitoring activities relevant to the indicator that are currently carried out by HELCOM Contracting Parties are described in the HELCOM Monitoring Manual Sub-programme sub-programme phytoplankton species composition, abundance and biomass.

The temporal and spatial coverage of the satellite remote sensing data used can be considered high in the open sea areas as well as in the outer coastal assessment areas of the Baltic Sea.

Cyanobacterial biomass monitoring takes place according to the national monitoring programmes.

Description of optimal monitoring

For remote sensing data, annually at least 30 daily spatial aggregates from valid bloom observations in an assessment area should be applied from the period between June 20th – August 30th in order to derive the annual bloom characteristics information. The compilation of observations is expected to be distributed spatially within the assessment unit in a non-biased way.

For biomass data, at least one sample per month has to be available to allow the calculation of seasonal averages. This precondition could also be fulfilled by pooling nearby stations.
Data and updating

*This pre-core indicator and its threshold values are yet to be commonly agreed in HELCOM.*

*The indicator is included as a test indicator for the purposes of the ‘State of the Baltic Sea’ report 2018, and the results are to be considered as intermediate.*

Access and use

The data and resulting data products (tables, figures and maps) available on the indicator web page can be used freely given that the source is cited. The indicator should be cited as following:

HELCOM (2018) Cyanobacteria bloom index. HELCOM pre-core indicator report. Online. [Date Viewed], [Web link].

ISSN 2343-2543

Metadata

**Result:** Cyanobacterial bloom index

**Data source:**

The remote sensing data source was the daily surface algae products of the Finnish Environment Institute (SYKE) from the years 2003-2014 (operative version of the product can be found on www.syke.fi/surfacealgablooms), which are in turn based on the respective chlorophyll $a$ and turbidity products. The remote sensing data used in this study were produced with same methods as the operative version but reprocessed in order to provide as harmonized data set as possible.

Chlorophyll $a$ concentrations were derived for the MERIS observations using BEAM plug-in processor MERIS Case-2 Water Properties Processor (FUB) according to Schroeder et al. (2007) and Schroeder et al. (2007a; 2007b). The MERIS turbidity estimations applied the BEAM plug-in processor Case 2 Regional (C2R; version 1.6.2) according to Doerffer and Schiller (2007). The use of this processor for MERIS data is supported also by other studies conducted in the Baltic Sea by Kratzer et al. (2008), Beltrán-Abaunza et al. (2014) and Harvey et al. (2015). The MODIS chlorophyll $a$ and turbidity were derived according to Maritorena et al. (2002; 2010) and O’Reilly et al. (1998; 2000). In the case of MODIS data, the algorithms for chlorophyll $a$ and turbidity were adjusted to the best performance when compared to *in situ* data (available monitoring programme observations).

The cyanobacteria biomass was collected and analysed by the HELCOM PEG group.

**Geographical coverage:**

- Spatial coverage of remote sensing observations, namely the average cloud-free area in satellite images varied between 18-31%. It must be noted that totally cloudy images were included in these calculations. The indicator can be applied for the open sea and outer coastal assessment areas of the Baltic Sea.
- Cyanobacteria biomass was observed at HELCOM COMBINE stations situated in the Kiel Bay, Bay of Mecklenburg, Arkona Basin, Bornholm Basin, Eastern Gotland Basin, Northern Baltic Proper, Gulf of Riga, Gulf of Finland and Bothnian Sea.

**Temporal coverage:**
- Remote sensing is observed to give at least one valid observation in an assessment area on an average of 49% of days between June 20th – August 31th
- Cyanobacteria biomass observations were monthly.

**Data aggregation:** The 2011-2015 values for each sub-basin were estimated as an inter-annual summer (20th of June – 31st of August) averages.
Contributors and references

Contributors

Saku Anttila*,1, Vivi Fleming-Lehtinen¹, Jenni Attila¹, Sofia Junttila¹, Heidi Hälfors¹, Norbert Wassmund², and Joni Kaitaranta³.

1) Finnish Environment Institute (SYKE), P O Box 140, FI-00251, Helsinki, Finland.
2) Leibniz Institute for Baltic Sea Research, Seestr. 15, D-18119 Warnemünde, Germany
3) HELCOM Secretariat

* email address saku.anttila@ymparisto.fi

HELCOM Expert Network on Eutrophication

Archive

This version of the HELCOM pre-core indicator report was published in July 2018:

Cyanobacterial bloom index HELCOM pre-core indicator 2018 (pdf)

Earlier versions of the core indicator report include:

HOLAS II component – Pre-core indicator report – web-based version July 2017 (pdf)

References


